Toyota Motorola Lean Six Sigma Reduce waste **Reduce Variation** Efficient Effective Speed/Simple Quality/Accuracy Flexible DMAIC 120 pounds vs 95 pounds **High firbrous** Detox plan HP Good things HIIT Eliminate/Reduce:-Supplements High firbrous PS Toxins ΗP Multivitamins Fats HIIT Fluids Supplements water retention PS Impurities **Multivitamins**

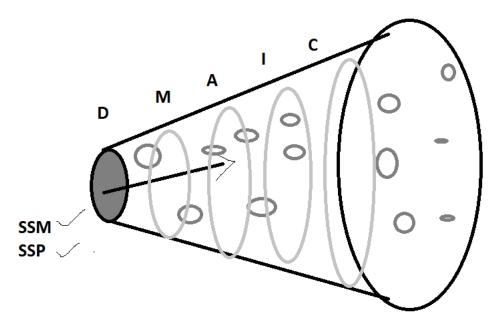
Lean Six Sigma

D - Define M-Measure 6 meals, 10 glasses, 9 hours sleep, move, A-Analyse 4.5 hours, 1.5 hours Sleeping,water, movement

I - SP, Water, movement 95 pounds

C- Maintain,

 \sim


disruptive innovation

Six Sigma

No Cost Low Cost Less Resources Less Time Low Risk

Lean

More Budget More Time More Resources High Risk

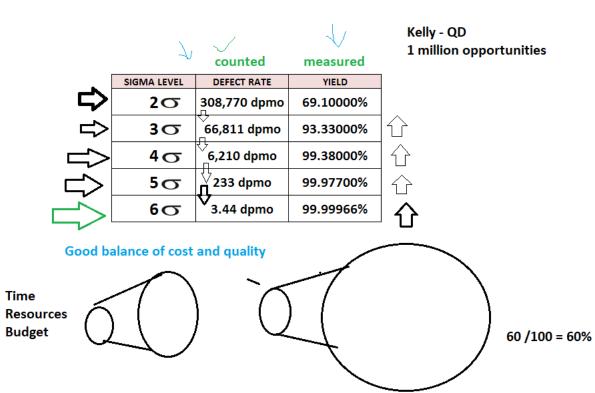
Six Sigma

60 20-

standard deviation

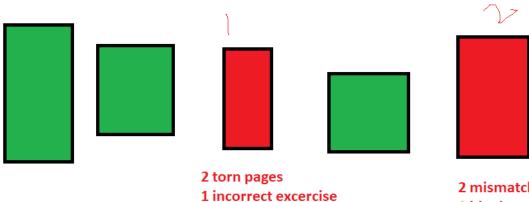
6 sigma equates - 3.4 DPMO

18th small greek letter A a


Defects Per Million Opportunities

3.4 defects in 1 million Opportunities = 6 sigma

Opportunities Means Chances 2000 units * 5 parameters 100000 opportunities, (chances) to make a good product or to make a mistake (defects/errors/rejection/rework)


- J

		(70)	PROCESS SIGMA TAB	LE 32%	
	[SIGMA LEVEL	DEFECT RATE	YIELD	
		20	308,770 dpmo	69.10000%	
	3.8	30	66,811 dpmo	93.33000%	99%
Ē		40	6,210 dpmo	99.38000%	
4	5	50	233 dpmo	99.97700%	
		7.60	3.44 dpmo	99.99966%	
	/	70	0.019 0-1		

What's good enough?

		\sim \vee \checkmark \checkmark	
	99% Good (3.8 Sigma)	99.99966% Good (6 Sigma)	
	20,000 lost articles of mail per hour (based on 2,000,000/hr)	7) articles lost per hour	\leftarrow
\Box	Unsafe drinking water for almost 15 minutes each day	1 unsafe minute every 7 months	\triangleleft
	5,000 incorrect surgical operations per week	1.7 incorrect operations per week	
	2 short or long landings daily at an airport with 200 flights/day	1 short or long landing every 5 years	
	2,000,000 wrong drug prescriptions each year	680 wrong prescriptions per year	
	No electricity for almost 7 hours each month	1 hour without electricity every 34 years	
		ل ا	

2 mismatch mock exams 1 blank page

2 defectives with 6 defects

Six Sigma

60 20-

standard deviation

6 sigma equates - 3.4 DPMO

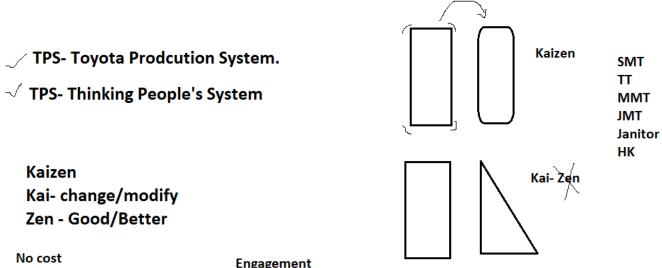
18th small greek letter A a

Defects Per Million Opportunities

3.4 defects in 1 million Opportunities = 6 sigma

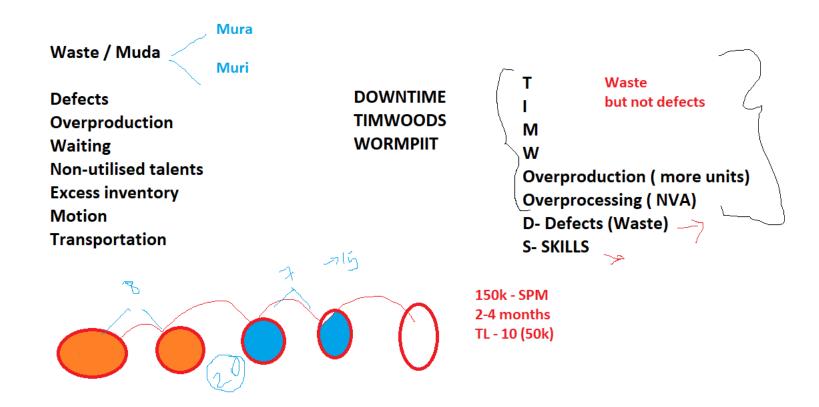
Opportunities Means Chances 2000 units * 5 parameters 100000 opportunities, (chances) to make a good product or to make a mistake (defects/errors/rejection/rework)

- J


Total production = 1200	
Total defects = 650	DPU = 0.54
Total defectives = 400	DPO = 0.108
Opportunities = 5 parameters	DPMO = 108,333
opportunities – o parameters	Yield = 67%

DPU, Defects Per Unit = Total defects / Total units

DPO, Defects Per Opportunity = Total defects / (Total units * number of opportunities)


DPMO, Defects Per Million Opportunities = [Total defects / (Total units * number of opportunities)] * 1000000

Yeild = (Good units / Total units) * 100

No cost Low Cost Less Time Less Resources Engagement Team work Partnership

Kaizen - https://www.youtube.com/watch?v=wot9DFzFRLU&t=92s&ab_channel=ExpertivityTechnologies

5 S

Sort

Set in order

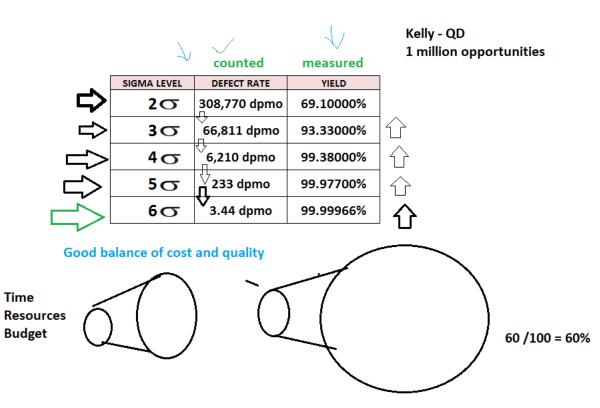
Standardize

Shine

Sustain

Safety

<mark>Cost</mark> Medical


Claim

Loss

	Japanese	English	
	Seiri	Sort	
F.C.	Seiton	Set in Order	
55	Seiso	Shine	
	Seiketsu	Standardize	
	Shitsuke	Sustain	

Need: 1) Daily 2) Weekly 3) Monthly 4) once /twice year Don't Need:-Sell it Glve it to team/dept Donate Trash

		10	PROCESS SIGMA TAB	LE 32%	
		SIGMA LEVEL	DEFECT RATE	YIELD]
		20	308,770 dpmo	69.10000%	
3	.8	30	66,811 dpmo	93.33000%	99%
	1	40	6,210 dpmo	99.38000%	
~	Ļ	50	233 dpmo	99.97700%	
		7.60	3.44 dpmo	99.99966%	
	,	70	0.019 0-1		

Define:

VOC-Voice customer (collect VOC) **KPIV and KVOP** Scope the project - SIPOC **Business Case Project Charter - Problem statement and Goal statement**

Pain areas

SMART Goals

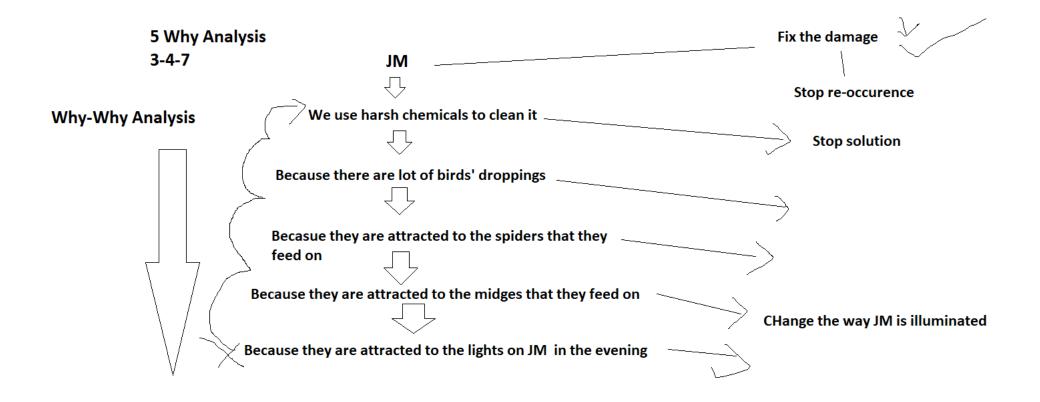
How much since when **Financial impact** C-sat /D-sat Percentage NOT include RC and solution

Sources of VOC:-Scorecard Surveys Star rating/reviews **Customer Service Representatives** Claims/Returns/Replacement **Complaint trackers** VOC- internal customer (sales Rep) Secondary data (SS, Crawler)

Collection of VOC: Proactive Reactive

JA

Types of VOC:-


Unclear and Vague - I didn't like your coffee, Bike, Training

Clear and Complex: Taste, temp, performance, Trainers knowledge,

Clear and Crisp : Bitter, sweet, Less than 70 DC, Poor Mileage, Unsmooth gear shifting, More vibration Engine noise, More examples, communications skills, does not anwer our queries /doubts

CTQ drill down Makes the VOC measurable

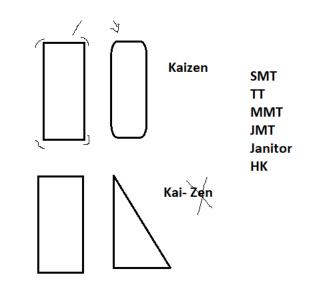
y=f (x)	
Sales of Coffee = F(taste)	It's not about measuring it right
	∼-≺ But
y=f(x1,x2,x3)	To measure the right things 🗸
Sales of Coffee = F(taste, color, aroma, price, quantity, hygiene)	
႔ Weight= f(diet, workout, sleep, stress level, disease etc)	Stomach - Collect data Sonography CT scan X-ray Urine test

Vilfredo Preto - Italian economist

		Pareto
80%	20%	Vital F
Peas po	ods	
Pods Pla	ants	80:20
Plants g	arden	70:30
Sales Pr	oduce	60:40
Sales Cu	ustomers	
Revenue	Sales	Time
Issues	Cause	Resou
		Budget

Pareto rule/graph Vital Few and Trivial many

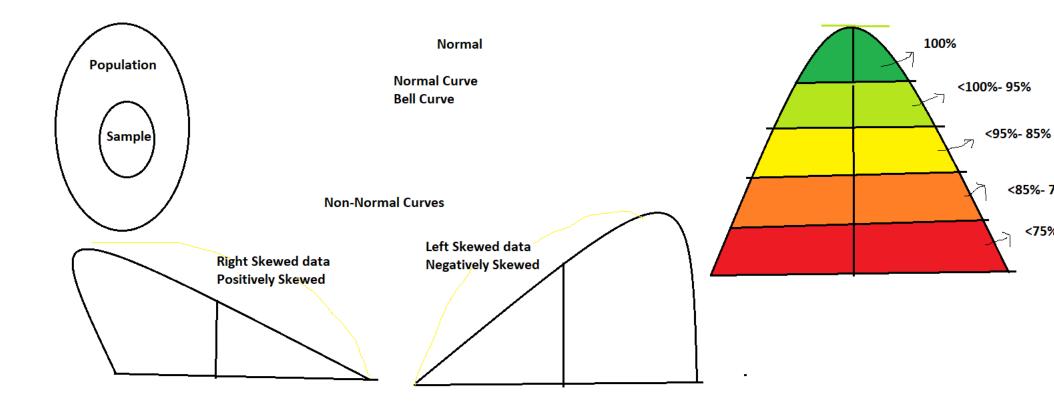
60:40 Time Resource Budget

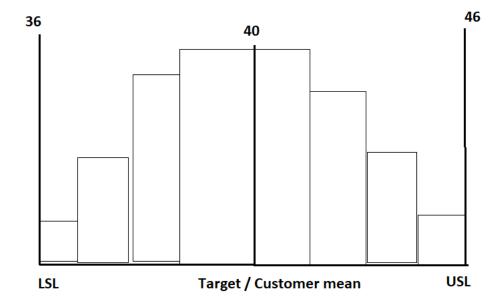

____ TPS- Toyota Prodcution System.

 \checkmark TPS- Thinking People's System

Kaizen Kai- change/modify Zen - Good/Better

No cost	
Low Cost	
Less Time	
Less Resources	

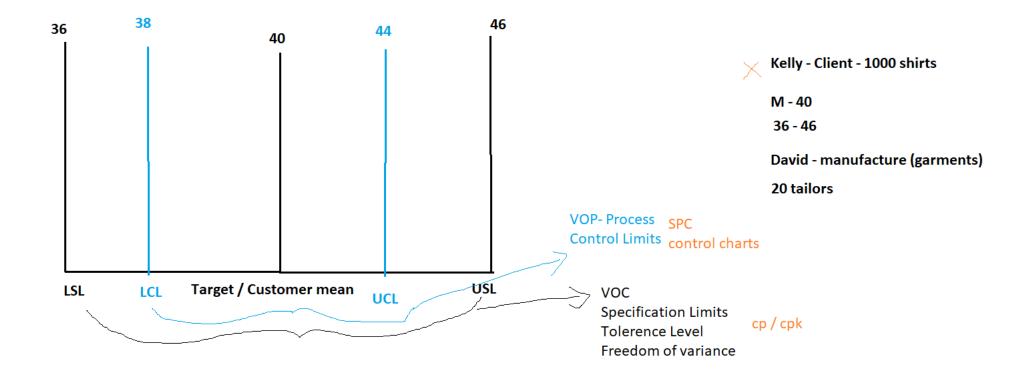

Engagement Team work Partnership

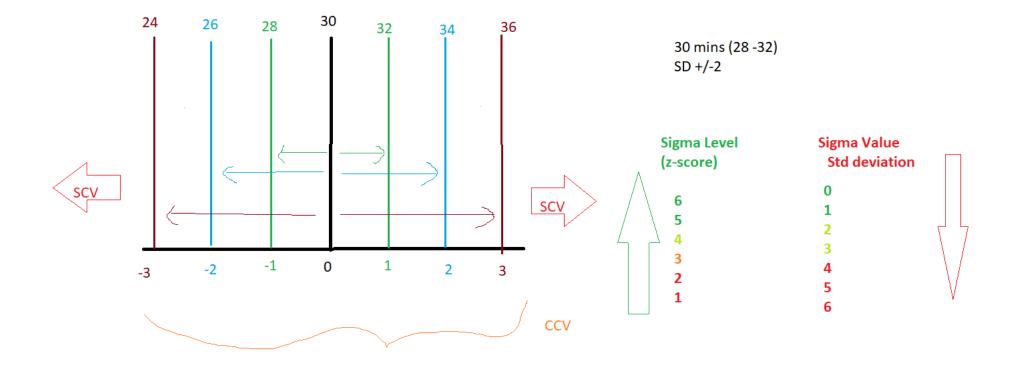


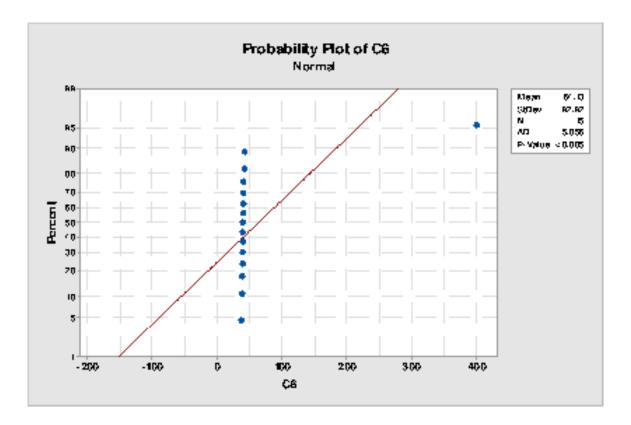
Measure:-How much Since When

What you can't measure, you can't improve and you can't manage

Types of Data: Data Collection: Normal/ non-normal distribution Base line As- is VSM (process map) Process capabilities (cp/cpk) DPMO - Sigma level (current) Measure of Central Tendency & DIspersion (mean, median, mode & range, StDev, Variance)

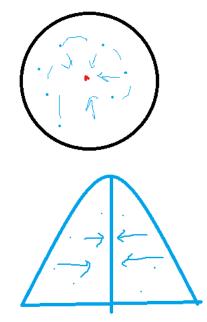


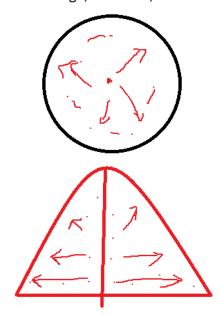

Kelly - Client - 1000 shirts

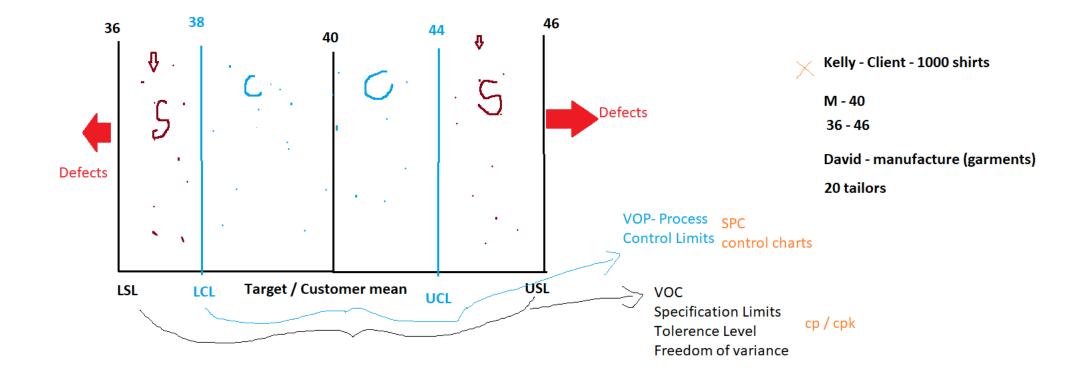

M - 40

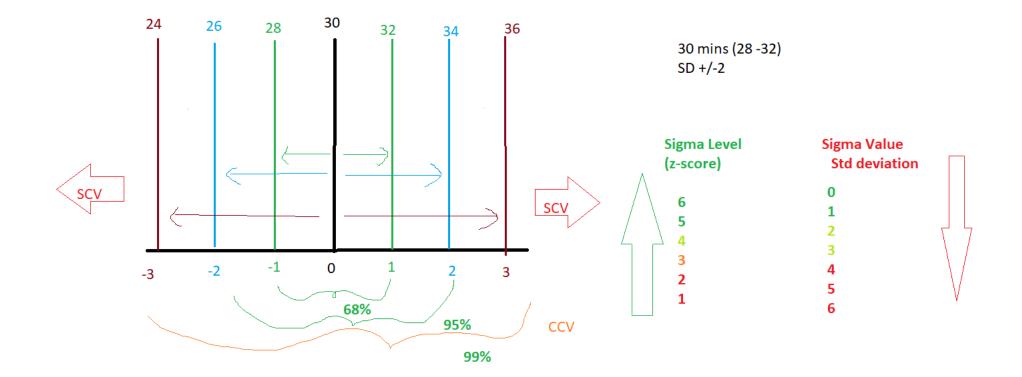
36 - 46

David - manufacture (garments)

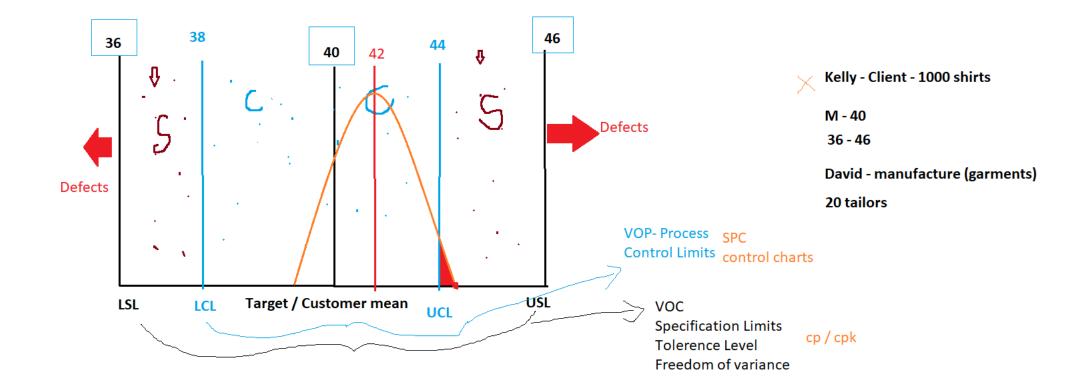


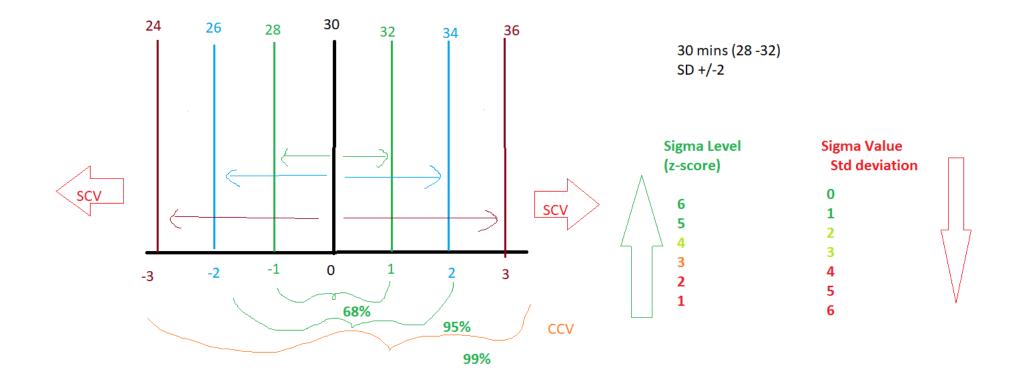



Measure of Central Tendency


Mean, Median, Mode

Measure of Dispersion Range, Variance, Standard Deviation

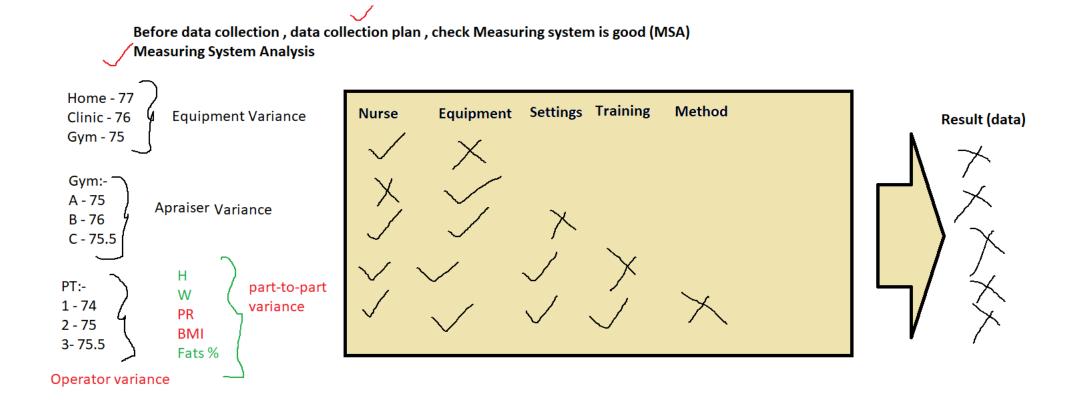


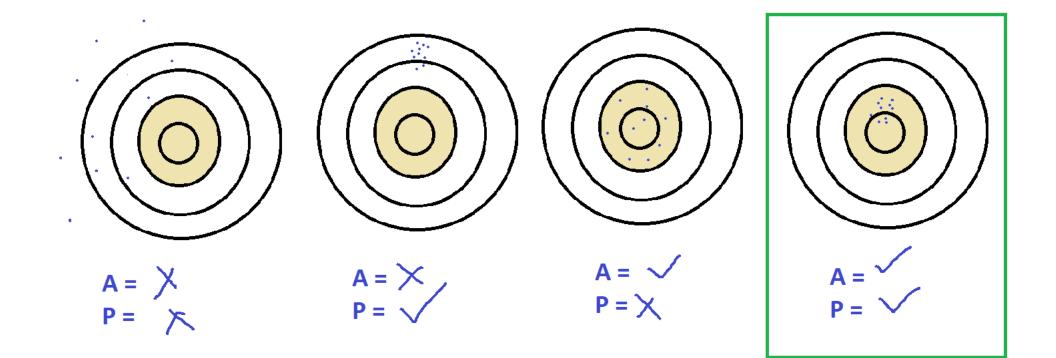

Data Normality

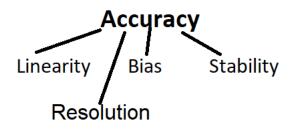
1) Histogram (bell curve)
 2) Mean=Median=Mode
 3) A_D test

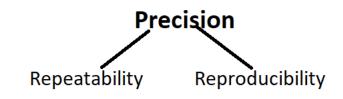
3) A_D test Anderson Darling Normality Test Wilbur **Anderson** and Donald **Darling**

p-value, 0.05 More than 0.05, normal Lesser than 0.05, non-normal






MSA :-

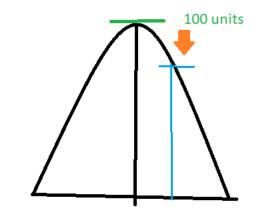

MSA- https://www.youtube.com/watch?v=k8NLd5linfw

Gage RnR - https://www.youtube.com/watch?v=6sRN1ICTqSM&ab_channel=LEARN%26APPLY%3ALeanandSixSigma

cp = (USL- LSL) / (6*SD)
cpk = (Nearest specifcation limit - Mean) / (3*SD)

٠

•

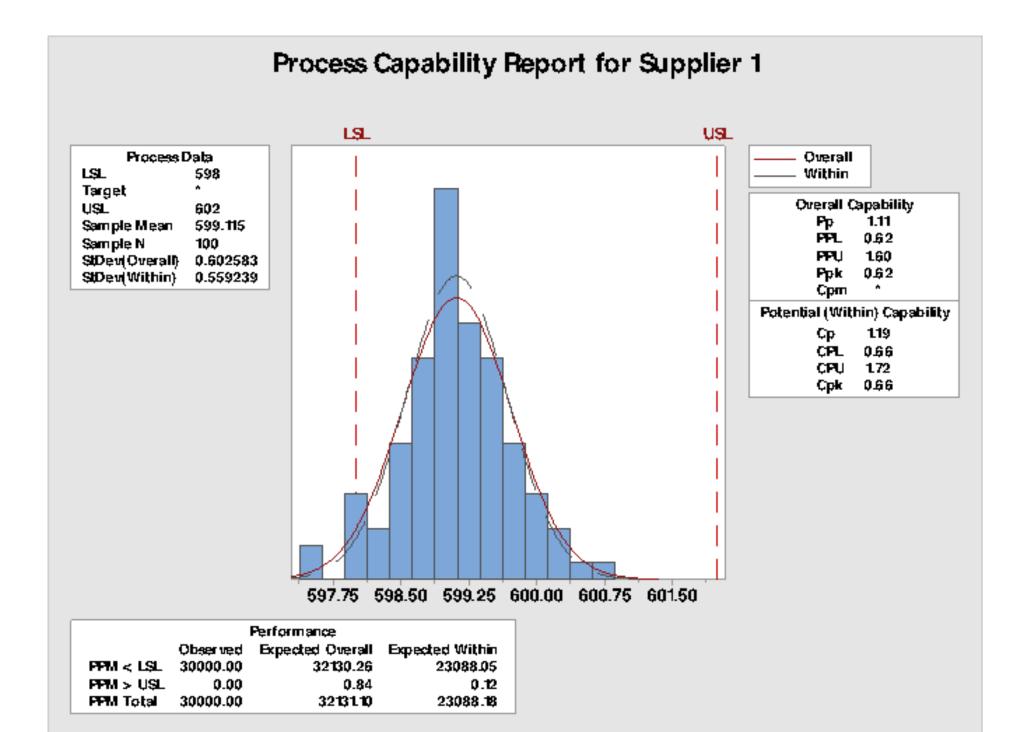

cp*3 = zst (short term sigma) cpk*3 = zlt (long term sigma)

	1 an	1
	А	В
USL	44	9.2
LSL	35	8
Mean	40	8.5
Std dev	2.6	0.09
ср	0.577	
cpk	0.513	
zst	1.73	
zlt	1.54	

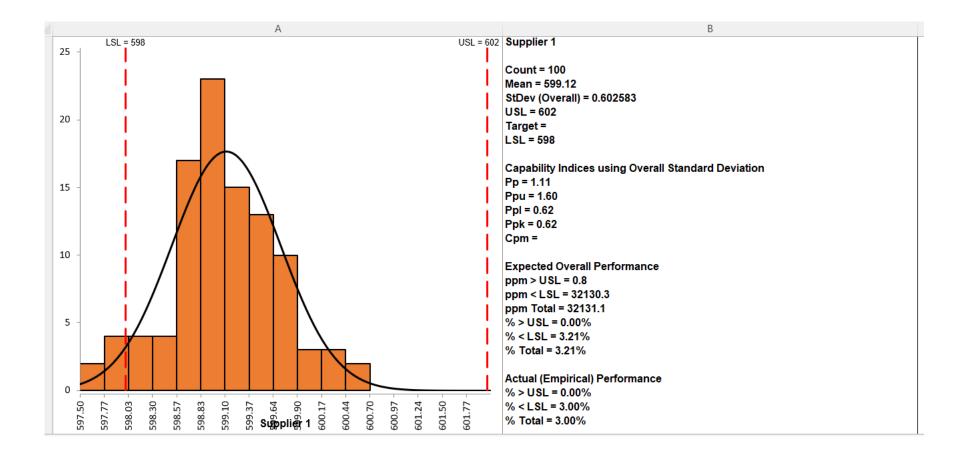
Sigma Level 1) DPMO + calc 2) cp/cpk *3 Cpu = (Process mean - LSL)/ (3 * Standard deviation)
 cpk = min (cpu, cpl)
 Cpl = (USL - Process Mean)/ (3 * Standard deviation)
 min (0.64, 0.512)
 cpu= (40 - 35) / (3 * 2.6) = 0.641

cpl= (44 - 40) / (3 * 2.6) = 0.5128

SCV	Long Term	Short Term CCV
	Annual Revenue	Monthly , Quarterly
Qu	arterly Quality score	Monthly Quality score , Fortnightly
Μ	onthly Quality score	Weekly QC, Daily QCd
	Weekly sale (50)	Daily - 12
Da	ily sales (24)	Hourly sales (3) * 8 =24 sales

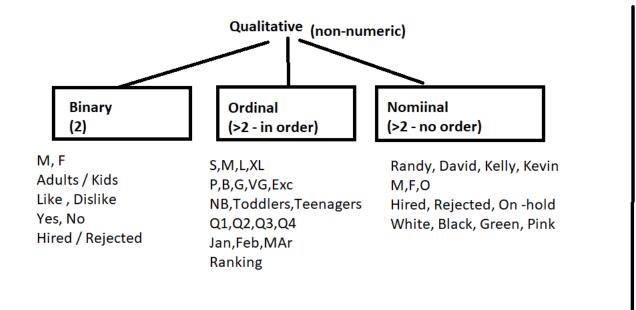


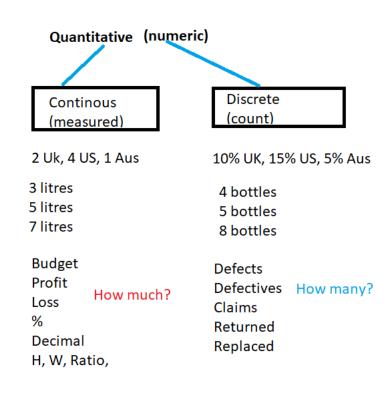
.


100 units 85 units

z-shift = zst - zlt= 1.5 ranges from 1.4 to 1.6 ~ 1.5

	Α	В	С	D	D	F
zst = 4 sigma	4	5	3	3.5	4	6
zlt = 1 sigma	3	3	2.5	3	2	3.5
z-shift	1	2	0.5	0.5	2	2.5




Sigma Process Capability Indices - Continuous Data				
(Assumes that data are normally distributed				
Sample Data (user inputs):				
Mean x-bar	40			
Standard Deviation s	2.6			
Upper specification limit USL	44			
Lower specification limit LSL	35			
Results:				
Cp, P	p 0.58			
Сри, Рр	u 0.51			
Cpl, P	ol 0.64			
Cpk, Pp	k 0.51			

Sigma XL	Sigma Process Sigma Level Calculator - Discrete Data					
	Sample Data (user inputs):					
	Number of units	n	1,200			
	Total number of defects observed	d	650			
	Number of defect opportunities per unit	0	5			
	Sigma Shift (typically +1.5)		1.5			
	Results:					
	Defects per Unit	dpu	0.541666667			
	Defects per Million Opportunities	dpmo	1,08,333.3			
	Defects per Opportunity	dpo%	10.83%			
	Yield	yield%	89.17%			
	Process Sigma Level	sigma	2.735			

Signation Process Signa Lovel Calculator Continuous Data				
Sigma Process Sigma Level Calculator - Continuous Data				
(Assumes that data are normally distributed)				
Sample Data (user inputs):				
Mean x-bar	40			
Standard Deviation s	2.6			
Upper Specification Limit USL	44			
Lower Specification Limit LSL	35			
Sigma Shift (typically +1.5)	1.5			
Results:				
Expected ppm > USL	61967.9			
Expected % > USL	6.20%			
Expected ppm < LSL	27235.2			
Expected % < LSL	2.72%			
Expected ppm (overall)	89203.1			
Expected yield (overall) %	91.08%			
Process Sigma Level	2.846			

Next week:-

Analyze Phase

Please watch these videos for the next class:-

- https://www.youtube.com/watch?v=8JOJ_7R_OWY simple linear regression on excel
- <u>https://www.youtube.com/watch?v=HgfHefwK7VQ</u> multiple linear regression on excel

Scatter Diagram : - <u>https://www.youtube.com/watch?v=1D2gudv591M</u>

https://www.youtube.com/watch?v=SG3_mWwReac

Gemba academy - DEO –<u>https://www.youtube.com/watch?v=tZWAYbKYVjM&t=53s</u> What is Design of Experiments (DoE)? Example: <u>https://www.youtube.com/watch?v=Srq9Q-yd1Rk</u>

Design of Experiments DOE used in Service and Transactional Businesses as well as Manufacturing. By John Dennis and Paul Allen https://www.youtube.com/watch?v=tmEe9GdKBNY&ab_channel=LeanSixSigmaTrainingLtd

Analyse:-

Hypothesis Test

Null is a claim or a belief which does not need any proof Alternate hypothesis

P-value is more than 0.05, accept the Null P-value is less than 0.05, Reject the Null He is innocent until proven guilty

He is innocent - Null Hypothesis He is not innocent - Alternate Hypothesis

Judge = Proof, photo, witness, camera footage (data) There is a risk involved in trusting the data.

P-value is more than 0.05, CCV , not satistically significant (no impact) P-value is less than 0.05, SCV , satistically significant (has impact) Null Hypothesis Alternate Hypothesis

P-value (0.05) Risk Alpha Beta

Type 1 and 2 error

Sky is blue Schools have teachers Teachers are strict The sun rises in the east Sun is hot Temperature in California is 100DC

Analyse:

Collected data in the measure phase. Toll gate Revieo RCA - Fishbone+ 5 Why anlalyse Hypothesis Test

alpha	CI
0.05	95%
0.04	96%
0.1	90%
0.03	97%
	0.05 0.04 0.1

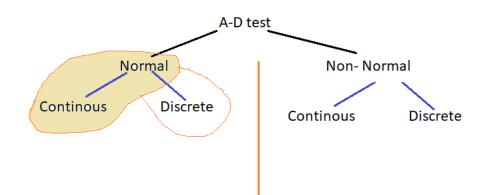
How much risk is OK?

New business = 80% profit - 20% loss (risk) Steel or iron industry = 10% is ok Pharma / medicines = 10% is not ok 5% is still a risk ... >3%

Over the decades , statisticians or business leaders or experts have decided that 5-10% risk is ok. Minimum risk is better. 5% risk is OK This risk is alpha, which is the p-value P-value is more than 0.05, CCV, not satistically significant (no impact) P-value is less than 0.05, SCV, satistically significant (has impact)

P-value is more than 0.05, accept the Null P-value is less than 0.05, Reject the Null P-value is more than 0.05, accept the Null P-value is less than 0.05, Reject the Null

If you reject Null, **Type 1 error**, risk alpha, **producer's risk** If you accept Null, **Type 2 error**, risk beta, **consumer's risk**

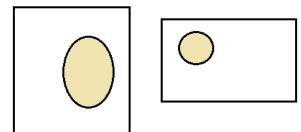

Assumption = Good Reality = Good Assumption = Reality Null Hypothesis , Accept

It wasn't good If you reject Null Type 1 error

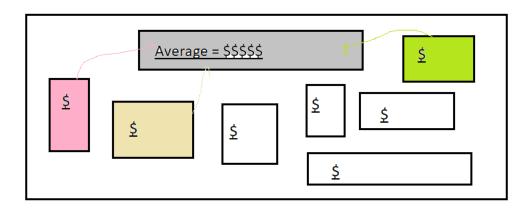
Titanic Assumption = Good Reality = Good Assumption = Reality It was not good Producer's risk Assumption = Good Reality = Not so good Assumption / Reality Alternate Hypothesis , Reject Null

It was good Failing to reject Null Type 2 error Me Time Assumption = Good Reality = Not so good Assumption ≠ Reality

It was good. Type 2 error **Consumers** will watch it **Consumer's risk**



Difference between t and z tests


z-test
Sample size (>30)
samples can be equal / unequal
32-32
32-300
48-48
48-340

Difference between 1-sample and 2-sample tests

2 sample tests are when the samples are compared from 2 different population

Paired t -test:-

Paired t-test Before - After

Pharma - BP patients 1 month course 1tab+1cap+1inj 20 sales reps cost per head 8 sales rep- training 12 - BAU

After
150
200
30
65
230
56
92
20

P-value is more than 0.05, CCV , not satistically significant (no impact) P-value is less than 0.05, SCV , satistically significant (has impact)

P-value is more than 0.05, accept the Null P-value is less than 0.05, Reject the Null

1

			Kelly	David	Kevin
Voice	CS	[80%	52%	100%
		1	75%	62%	100%
		Ĺ	86%	89%	25%
Chat email	Sales	ſ	96%	100%	25%
		5	93%	63%	60%
)	95%	100%	98%
		L			

1 way Anova

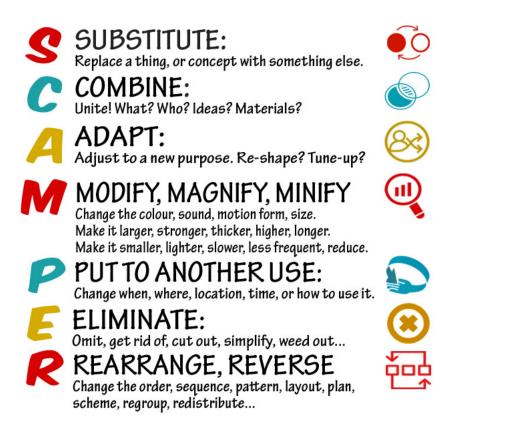
Detergents

	7	Det 1	Det 2	Det 3
cold ·	Ι	80%	52%	100%
	í	75%	62%	100%
	L,	86%	89%	25%
Hot	ſ	96%	100%	25%
	5	93%	63%	60%
	٦.	95%	100%	98%

2 way Anova

2 way Anova

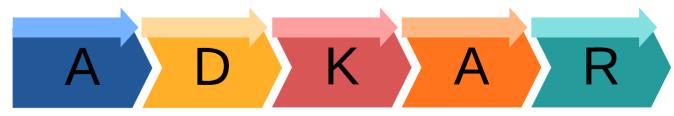
Parametric tests - Normal Non Parametric tests - Non-Normal


1 way Anova

Analyze Phase: Hypothesis Testing with Non-Normal Data

One- and Two-Sample Proportion: (for pass/fail data) Chi-Squared (Contingency Tables): (for association)

Improve:-


PICK chart – prioritize the solution.

CBR = Cost Benefit Ratio CBA = Cost Benefit Analysis

Cost = 100 Benefit = 200 CBR : B/C CBR > 1, do it CBR < 1, do it CBR = 1, getting approval is difficult. Check for hidden benefits

Change Management

ADKAR

<u>Awareness</u>

- Announce the change to employees well ahead of time.
- Explain your reasoning behind the change, including current pain points and potential ROI of the new solution.
- Give employees an opportunity to ask questions and make suggestions.

- Desire • Gauge employees'
- reactions to the change.Identify champions.
- If employees are resistant
- or indifferent, address their concerns or show them how the change
- benefits them personally.

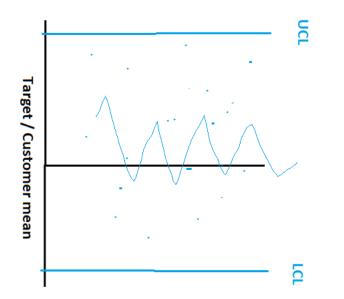
<u>Knowledge</u>

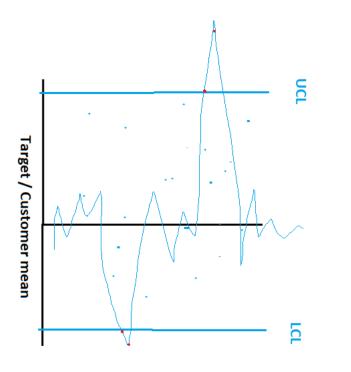
Provide training or

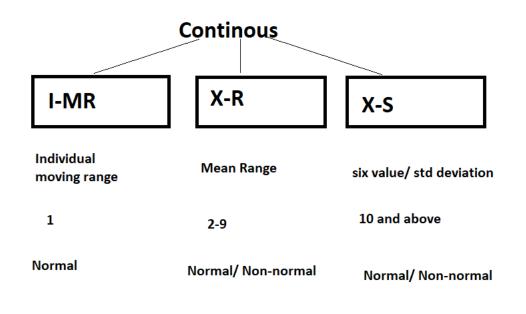
- coaching to show what employees need to do after the change takes place.
- Address any skill gaps.
 Offer resources, such as process flowcharts, that
 - employees can reference later on.

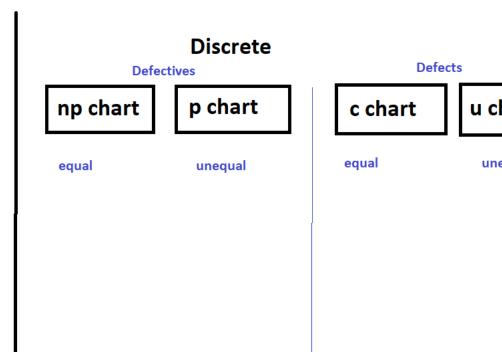
<u>Ability</u>

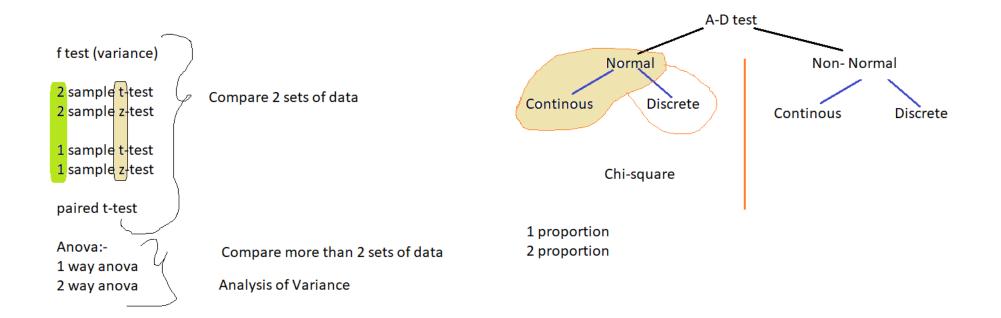
Schedule practice runs before the change is fully implemented.


- Monitor performance immediately following the
- change and provide
- constructive feedback.Set reasonable goals and metrics at the start.
- Adjust processes as necessary.


Reinforcement


 Monitor the change over time to ensure it fulfills your desired outcome.
 Use positive feedback, rewards, and recognition to encourage employees to keep following the new process.


Engagement zone


Enablement zone

