45 minutes

Data

Volume

ppl







 Overall Equipment Effectiveness (OEE) = A\* P\* Q, where A is Machine Availability, P is Performance efficiency & Q is Quality rate

A = Operating time/Planned production time P = (Total pieces / operating time) / Ideal run rate Q = Good pieces produced / total pieces produced A, P & Q factor for down time loss, speed loss & Quality loss respectively. The **OEE value** is a **Lean** / **TPM metric,** which can also be used to prioritise a process for improvement projects. World class OEE value is taken as 85% & individual values for A, P & Q are 90%, 95% & 99.9% respectively.

| OEE Factor   | Shift 1 | Shift 2 |
|--------------|---------|---------|
| Availability | 90.0%   | 95.0%   |
| Performance  | 95.0%   | 95.0%   |
| Quality      | 99.5%   | 96.0%   |
| OEE          | 85.1%   | 86.6%   |
|              |         |         |

OEE - Overall Equipment Efficieny
OEE = A\*P\*Q

Availibility =
Performance =
Quality=

WC = 85% Ind std = 50-60%

### Data for OEE calculation

| Particulars          | Data/ value                  |
|----------------------|------------------------------|
| Shift length         | 480 mins                     |
| Short breaks         | 2 @ 15 mins = 30 mins        |
| Meal break           | 30 mins                      |
| Down time            | 47 mins                      |
| Ideal run rate (IRR) | 60 pieces per min            |
| Total pieces         | 19,722 pieces                |
| Reject pieces        | 453 pieces                   |
| Planned prodn time   | Shift length - total breaks  |
| Operating time       | PI prodn time - down time    |
| Good pieces          | Total pieces – reject pieces |
| Availability         | Op time / pl prodn time      |
| Performance          | (Tot pieces/op time) / IRR   |
| Quality              | Good pieces/total pieces     |

#### **OEE** calculation

- Planned prodn time = 420 mins
- Operating time = 373 mins
- Good pieces = 19,269
- A = 373/420 = 0.8881
- P = (19722/373)/60 = 0.8812
- Q = 19269/19722 = 0.97703

Q = 97.70%

OEE = 76.46%

We see that A (Machine Availability) & P (Performance) needs to be improved to improve OEE value further. And among A & P, P needs more improvement.





From Sarah to Everyone 05:09 PM

equipment "pinch point" warning label

From Nick to Everyone 05:09 PM

We use a 2" hose and a 3" hose to ensure the incorrect tank does not get attached

From Trey Case to Everyone 05:10 PM

Coastal uses an 8mm x 8mm notch that is wire cut into foam design

From Jake\ Koetsier to Everyone 05:10 PM

lot codes could be scanned in by a barcode rather than manually typing



#### **SMED**

### 100 units per hour = 700 units per day

3 dies \* 15 minutes = 45 minutes 3 dies \* 10 minutes = 30 minutes 3 dies \* 5 minutes = 15 minutes

3 dies \* 3 minutes = 9 minutes

30 minutes 3 minutes

30 seconds

Seconds

10 seconds

Nano-Seconds

Single minute ( digit)
SMED - Single minute Exchange of Dies



F1 car race- Pit stop Racer- Productive Change of tyres= UnProductive

1 to 2 hours

45 mins

30 mins

15 mins

10 mins

5 mins

3 mins

2 seconds

Kaizen Kai- change/modify Zen - good / better

**Lean Tool** 

No Cost Low Cost Less Time Less Resources Low Risk



Toyota

TPS - Toyota Production System TPS - Thinking People's Solution

Empower their people at their levels.

TT, C-team, Janitors, HK MMT, SMT, Associates





Day 3:-

What you can't measure, you can't improve, You can't manage.

### **Toll-Gate Review**

y = f(x)



```
coffee = f( brand of coffee)

y = f(x1, x2,x3,x4....)
coffee = f( water, milk, sugar,coffee)

y = f(x)
sale coffee = f( taste of coffee)

y = f(x1, x2,x3,x4....)
sale of coffee = f( taste, color, aroma, quantity, hygiene, price )
```

### Not about measuring it right But to measure the right things



Examples of y=f(x1,x2,x3...)

From Gabe TeBos to Everyone 03:34 PM

Y=Wire Delivery

Wire Delivery =f(Wire accuracy, Delivery Timeliness, Product condition)

From Jake Koetsier to Everyone 03:35 PM

**Blending** = f(raw materials, formula, technicians, blenders)



Fishbone - <a href="https://www.youtube.com/watch?v=mLvizyDFLQ4F">https://www.youtube.com/watch?v=mLvizyDFLQ4F</a>





Pareto:-

### Pareto - Priortising tool

### Vilfredo Pareto - Italian economist

20% land 80% land 80% poor 20% rich

pods peas pods plants plants garden soil garden produce garden sales product profit sales sales customer complaint customer Issues cause

80:20 rule, pareto pareto graph prioriting tool vital few and trivial many

80:20 70:30 60:40









## FMEA - Risk Assesment tool

**RPN** - Rish Priority Number

RPN = S\*O\*D

Severity 1-10 Ocurence 1-10 Detection 1-10

Least RPN = 1\*1\*1 = 1 Max RPN = 10\*10\*10 =1000 RPN range from 1 to 1000

When RPN is 100 or more, we need recomendation

FMEA VIDEO <a href="https://www.youtube.com/watch?v=riGRd4ViCw4">https://www.youtube.com/watch?v=riGRd4ViCw4</a>



Normal Curve Normal Distribution Bell Curve





Types of Data:-



F,M Adult, Kids Like, Dislike Hired, Rejected True,False, Return,Replacement Profit,Loss

S,M,L,XL,XXL Q1, Q2, Q3, Q4 P,B,G,VG,Exc Ranking Jan,Feb,Mar,April NB,Toddler, Teenagers F,M,O Hired, Rejected, On hold Profit,Loss, Breakeven Black,Green,White, Red

## Quantitative data

Discrete (counted)

Continous (measured)

15 members 67% trainees

4 bottles 5 litres 5 bottles 6 litres 10 bottles 8 litres

Defects Profit
Defectives Loss
Returns H,W,L,B
Claims Revenue

How many? How much?

# Qualitative data

# Quantitative data

Are you over the age of 16 years?

Y Y N N Y Y Y N N Y How old are you?







| Population<br>1000 shirts |     |         | Sample<br>100 shirts |
|---------------------------|-----|---------|----------------------|
| 1000 Shirts               | •   |         | 100 Shirts           |
|                           |     |         |                      |
| 120                       | 12% | Buttons | 12                   |
| 50                        | 5%  | Pockets | 5                    |
| 160                       | 16% | Sleeves | 16                   |
| 20                        | 2%  | color   | 2                    |
|                           |     |         |                      |

Describes mean, median, graph std dev

Box Plots and Multiple X Boxplots - <a href="https://www.youtube.com/watch?v=GKBBqAvH9p4&ab-channel=SigmaXLInc">https://www.youtube.com/watch?v=GKBBqAvH9p4&ab-channel=SigmaXLInc</a>.





Weak



### Moderate





Perfect/ Strong correlation



Negative correlation

Positive correlation

#### Scatter Plot

r-value Coefficient of correlation ranges from -1 to +1

Positive correlation (+) (+) , (-) (-)

High temperature , More IC sales Less defects, Less complaints Low quality, Less Sales More sales, More profit More Replacement, More loss More rework, More cost Less waste , Less cost -1 = strong negative correlation

+1 = strong positive correlation

0 = No correlation

0.2 to 0.7 = Weak to moderate

0.8 and above - strong

Negative Correlation (inversely proportional) (+) (-), (-) (+)

Low temp, high hot coffee sales More sales, Less Over time More production, Less waiting Low price, more sales



Normal Curve Normal Distribution Bell Curve



Non-normal curves







Measure of central tendency Mean, Median, Mode



Measure of dispersion Range, Std dev, Variance

# Measurement system Analysis

H -70 C-71 G- 71.5

Gym-1- 72.5 2-71 3-71.5









